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Abstract

Large-scale shared-memory multiprocessors such as the BBN Butterfly and IBM RP3
introduce a new level in the memory hierarchy: multiple physical memories with different
memory access times. An operating system for these NUMA (NonUniform Memory Access)
multiprocessors should provide traditional virtual memory management, facilitate dynamic and
widespread memory sharing, and minimize the apparent disparity between local and nonlocal
memory. In addition, the implementation must be scalable to configurations with hundreds or
thousands of processors.

This paper describes memory management in the Psyche multiprocessor operating
system, under development at the University of Rochester. The Psyche kernel manages a
multi-level memory hierarchy consisting of local memory, nonlocal memory, and backing store.
Local memory stores private data and serves as a cache for shared data; nonlocal memory
stores shared data and serves as a disk cache. The system structure isolates the policies and
mechanisms that manage different layers in the memory hierarchy, so that customized data
structures and policies can be constructed for each layer. Local memory management policies
are implemented using mechanisms that are independent of the architectural configuration;
global policies are implemented using multiple processes that increase in number as the
architecture scales. Psyche currently runs on the BBN Butterfly Plus multiprocessor.

This work was supported in part by NSF CER grant number DCR-8320136 and Darpa/ETL contract number
DACA76-85-C-000 1.
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MEMORY MANAGEMENT FOR
LARGE-SCALE NUMA MULTIPROCESSORS

Abstract

Large-scale shared-memory multiprocessors such as the BBN Butterfly and IBM RP3
introduce a new level in the memory hierarchy: multiple physical memories with different
memory access times. An operating system for these NUMA (NonUniform Memory Access)
multiprocessors should provide traditional virtual memory management, facilitate dynamic and
widespread memory sharing, and minimize the apparent disparity between local and nonlocal
memory. In addition, the implementation must be scalable to configurations with hundreds or
thousands of processors.

This paper describes memory management in the Psyche multiprocessor operating
system, under development at the University of Rochester. The Psyche kernel manages a
multi-level memory hierarchy consisting of local memory, nonlocal memory, and backing store.
Local memory stores private data and serves as a cache for shared data- nonlocal memory
stores shared data and serves as a disk cache. The system structure isolates the policies and
mechanisms that manage different layers in the memory hierarchy, so that customized data
structures and policies can be constructed for each layer. Local memory management policies
are implemented using mechanisms that are independent of the architectural configuration:
global policies are implemented using multiple processes that increase in number as the
architecture scales. Psyche currently runs on the BBN Butterfly Plus multiprocessor.

1. Introduction

Large-scale, shared-memory multiprocessors with hundreds or thousands of processing

nodes offer tremendous computing potential. This potential remains largely unrealized, due in

part to the complexity of managing shared memory. NUMA (NonUniform Memory Access)

architectures such as the BBN Butterfly [1] and IBM RP3 1171 further complicate matters by

introducing a new level in the memory hierarchy: multiple physical memories with different

memory access times. An operating system for NUMA multiprocessors should provide

traditional virtual memory management, facilitate dynamic and wide-spread sharing. and

minimize the apparent disparity between local and nonlocal memory. Conventional memory

management assumptions must be re-evaluated, new techniques developed, and the

interactions between paging, sharing, and NUMA management explored. In addition, the

implementation must scale with the architecture.

This paper describes memory management in the Psyche multiprocessor operating
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system.' under development at the University of Rochester. Psyche is designed to support a

wide variety of models for parallel programming. Although appropriate for use on bus-based.

shared-memory multiprocessors such as the Sequent and Encore systems, Psyche is especially

weli-suited for use on large-scale NUMA multiprocessors.

Memory management plays a central role in the Psyche kernel. Protected procedure calls.

the primitive communication mechanism in Psyche, are implemented using page faults.

providing a hook for protection policies implemented in software. The kernel manages a

transparent memory hierarchy consisting of multiple memory classes (including local and

non-local memory) and backing store, giving users the illusion of uniform memory access times

on NUMA multiprocessors. As in most systems, the kernel also implements virtual memory

and demand paging.

Three goals of the Psyche memory management system are:

" scalability - the implementation should scale to multiprocessors with hundreds of

processing nodes,

" portability - the implementation should be portable to any paged. shared-memory

multiprocessor, and

" generality - specific details of the Psyche kernel interface should be isolated in the

implementation as much as is possible.

We acheive these goals by structuring memory management into four abstraction layers. The

lowest layer hides the details of the hardware, including hardware page tables, so that the

implementation can be readily ported. The lowest layer also implements local memory

management policies using mechanisms that are independent of the architectural

configuration. A separate layer encapsulates the management of nonlocal memory, including

page replication and migration, so that different policies for NUMA memory management may

be incorporated easily. This layer implements global policies using processes that increase in

number as the architecture scales. Additional layers separate demand paging and the

management of backing store from the Psyche kernel interface. No low-level layer takes

advantage of Psyche-specific abstractions, so changes in the kernel interface are localized in

the implementation. No high-level layer takes advantage of particular hardware properties.

enhancing portability.

1 The evolution of the Psyche design is presented in a companion paper 119J.
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We present a brief overview of Psyche in section 2, followed by a description of the

ie--iory management abstraction layers in section 3. We then describe how the various layers

cooperate to implement virtual memory (section 4) and NUMA memory management (section

5). Related work and conclusions are discussed in sections 6 and 7.

2. Psyche Overview

The Psyche programming model [19] is based on passive data abstractions called realms.

which include both code and data. The code constitutes a protocol for manipulating the data

and for scheduling threads of control. Invocation of protocol operations is the principal

mechanism for accessing shared memory, thereby implementing interprocess communication.

Depending on the degree of protection desired, an invocation of a realm operation can be

as fast as an ordinar' procedure call, termed optimized invocation, or as safe as a heavyweight

process switch, termed protected invocation. Unless the caller insists on protection, both

forms of invocation look exactly like subroutine calls. The kernel implements protected

invocations by catching and interpreting page faults.

To permit sharing of arbitrary realms at run time, Psyche arranges for all realms to reside

in a uniform address space. The use of uniform addressing allows processes to share data

structures and pointers without the need to translate between address spaces. Realms that

are known to contain private data or realms that can only be accessed using protected

invocations can overlap, ensuring that normal operating system workloads fit within the

Psyche address space, while allowing very flexible and dynamic sharing relationships.

At any moment in time, only a small portion of the Psyche uniform address space is

accessible to a given process. Every Psyche process executes within a protection domain, an

execution environment that denotes the set of available rights. A protection domain's view of

the Psyche address space, embodied by a hardware page table, contains those realms for

which the right to perform optimized invocations has been demonstrated to the kernel.

Processes move between protection domains, inheriting a new view of the address space and

the corresponding set of rights, using protected invocations.

3. Memory Management Organization

3.1. Motivation

Traditional operating systems use memory management hardware and the ability to

detect accesses to invalid pages to implement both address space protection and virtual

memory. However, as the only hardware protection mechanism provided by most

architectures and the sole indicator of dynamic memory reference patterns, memory mappings
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are often used to serve other purposes as well. For example, in BSD Unix. invalid page

mappings are used to simulate reference bits 121. In the Apollo Aegis system, memory

management is used to implement a single-level store, thereby unifyJng memory and backing

store [141. Accent [101 and Mach [21] use memory mapping techniques to implement efficient

communication, employing copy-on-write to avoid multiple physical copies of messages. Kai Li

has used memory management to implement a distributed shared memory [16].

As the role of the memory management system has expanded within the operating

system, it has become increasingly important to structure the implementation to separate the

disparate functions supported by the mapping hardware. For example, Mach separates the

machine-dependent and machine-independent portions of the memory management system

[181, and the page replacement decision from the management of backing store [21]. To meet

our goals of scalability, portability, and generality, we have extended this trend.

3.2. Layers

The Psyche memory mangement system is structured into four layers of abstraction. The

NUMA (nonuniform memory) layer is responsible for local physical memory allocation and

hardware page tables. The UMA (uniform memory) layer manages global physical memory and

implements the illusion of uniform memory access time. The VUMA (virtual memory) layer

manages backing store and implements the system's default pager. The PUMA (Psyche

memory) layer implements the Psyche kernel interface. This layering is depicted in Figure 1.

The NUMA layer isolates the machine-dependent portion of the memory management

system by exporting an interface analogous to the pmap interface in Mach [181. The NUMA

layer defines two abstractions: NUMA pages and NUMA address spaces. The NUMA page size

is a multiple of the physical page size. The physical memory underlying a NUMA page may be

allocated anywhere in main memory, as shown at the bottom of Figure 1; different NUMA

pages in the same NUMA address space may exhibit different memory access times.

Operations are provided to create, destroy, and copy a NUMA page, allocating and deallocating

physical memory as needed. The reference and modify bits for a NUMA page may be examined

by higher layers in order to implement global memory allocation policies. Operations are also

provided to create an address space (and a corresponding hardware page table) on a specific

node, activate an address space on a node, map and unmap NUMA pages in an address space.

and set the protection attributes of a NUMA page in an address space.

In addition to hardware page tables, the NUMA layer implements a core map for use by

memory allocation policies. The core map contains an entry for each NUMA page allocated in

local memory. Each entry is linked into one of three lists that is maintained for each processor
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Figure 1: Psyche Memory Management Layers

node: allocated, free, and in-transit. (Pages selected for removal from local memory remain in-

transit until actually moved to another location in memory.) Each entry also contains software

reference and modify bits that reflect local usage, and a list of local hardware page tables that
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contain a mapping for the page.

The UMA layer is responsible for managing global physical memory. It uses local memory

as a cache for shared data, thereby minimizing both memory access time and memor-,

contention. The UMA layer also uses global memory as a cache for backing store. thereby

reducing the number of I/O operations required. Global policies for physical memory

allocation are implemented by the UMA layer based on information prov-ided by local policies in

the NUMA layer.

The UMA layer implements two abstractions: UMA pages and UMA address spaces. Each

UMA page is implemented by one or more NUMA pages. The physical memory underlying an

UMA page may be allocated anywhere in main memory. and may exist in several different

locations simultaneously. Figure 1 shows two UMA pages. which are mapped into two NUMA

address spaces on different processor nodes. One of the UMA pages is replicated in physical

memory. and each address space maps a different copy. The other LIMA page is represented

by a single copy, which is mapped by both address spaces. Due to automatic page migration

and replication, UMA pages in the same LMA address space appear to exhibit comparable

memory access times.

To admit large, sparse address spaces, UMA address spaces are implemented using a

hash table. Entries contain protection and global reference information for an UMA page, and

the location of the various NUMA pages that implement the UMA page. Each UMA address

space may be represented by several underlying NUMA address spaces and hardware page

tables.

The VUMA layer implements virtual memory and demand paging. A VUNIA address space

augments an underlying UMA address space with entries for VUMA pages that may reside on

backing store. Figure I shows five VUMA pages. Two VUMA pages are resident in memory

and their contents are contained in tw, TIMA pages. Three VUMA pages are resident on

backing store. A default system pager in the VUMA layer manages backing store for user

programs. Psyche also allows users to define Mach-style external pagers 121] that manage

backing store for an application. The VUMA layer propagates requests for VLTMA pages backed

by a user-defined pager to the PUMA layer, where communication with external pagers is

implemented.

The PUMA layer implements the Psyche kernel interface, including the Psyche uniform

address space, protection domains, protected procedure calls, and communication with user-

defined pagers. The uniform address space is represented as a splay tree containing blocks of

the virtual address space. Virtual addresses within a block are either all allocated or all free.

Ope-ations are providec to allocate and deallocate areas of the shared virtual address space.
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and to find the realm allocated to a particular virtual address. The latter operation is the most

important 'Ince it is used each time a realm is accessed for the first time from a given

protectX.,n domain. By using a splay tree. the find operation requires amortized time

logarithmic in the number of blocks in the Psyche virtual address space, optimizing access to

realms that are frequently used.

Each Psyche protection domain is implemented by a VUMA address space and a list of

VUMA pages, describing the core image of the initial realm of the protection domain. In

addition, each protection domain maintains a list of realms that have been accessed from

within the protection domain, and a list of other protection domains that have accessed its

initial realm. These lists are used to avoid authorization on subsequent calls. and to ensure

consistency across protection domain- when realms are destroyed.

The protection attributes defined by the PUMA layer are definitive, in that the protection

associated with a page in lower layers may be more restrictive than the true protection. The

true access rights to a page within a protection domain can only be determined by the PUMA

layer. In particular, a protected procedure call will generate an invalid fault that can only be

resolved by the PUIMA layer, in cooperation with protection policies defined by the user.

3.3. Interaction Between Layers

Operations within the virtual memory system are induced by two kinds of events: user

memory references that cause a page fault and system daemons that execute periodically.

Events of both kinds occur at all layers in the system: each layer defines Its own response to

faults and the nature of the daemons that execute within the layer.

Page faults propagate upwards, from the lowest layer in the system (NUMA) to the highest

(PUMA). Each layer in the system may use faults to implement demand-driven policies. When

a layer elects to service a fault, the fault propagates no higher. The NUMA layer. which is

responsible for local memory management. can use faults to implement second-chance

reclamation schemes for "paged out" local memory. The UMA layer, which attempts to

minimize the number of nonlocal references, can use faults to implement software caching

schemes. The VUMA layer, which manages backing storage, can use faults to implement

demand paging. Finally, the PUMA layer, which implements higher-level operating systems

functions, can use faults to implement protected procedure calls. We describe how the layers

cooperate to implement virtual memory and NUMA memory management in later sections.

Active agents, or daemons, are necessary for the implementation of certain policies.

Daemons may operate at each of the levels in the memory management system, and are

distinguished on the basis of function. Daemons within the NUMA layer help to implement the
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policy for local page replacement. Each daemon manages one local memory, allowing the

architecture to scale without affecting page replacement. Daemons in the NIUMA layer interact

with the UMA layer using a buffered queue and upcalls. Daemons within the UMA layer help

to implement the policy for global memory management and for NUMA memory management.

Global UMA daemons service page replacement requests provided by the page daemons at the

NUMA layer. Other daemons monitor dynamic reference behavior to implement page migration

and replication policies. Daemons within the VUMA layer manage backing store, serving

pageout requests from UMA daemons. One result of our layered organization is that daemons

at each layer are independent of deamons in other layers, performing different functions and

executing at different rates.

3.4. Rationale

Our particular division of functionality into layers reflects both the locality inherent in the

memory hierarchy and our original goals of portability, scalability, and generality. Different

levels in the memory hierarchy are isolated within different layers in the design, allowing each

layer to tailor its implementation to one level of the hierarchy. Portability results from isolating

machine-dependent details within the lowest level of the memory hierarchy. Scalabilit - is

supported by the separation of local and global resource management. Generality is achieved

by isolating Psyche abstractions within the highest level of the memory hierarchy, separated

from traditional memory management functions.

The separation between the NUMA and UMA layers results from the distinction between

local and remote memory. We use simple, well-understood policies for local memonv

allocation, which serve as a building block for global policies. Since the NUMA layer uses only

local information to implement its policies, it is unaffected as the architecture scales to larger

configurations. Within the UMA layer, more complex global policies for page migration and

replication are simplified by using local information provided by the NUMA layer.

The separation between the UMA and VUMA layers reflects the difference between main

memory and backing store. The UMA layer uses physical memory as a large disk cache.

avoiding disk operations whenever possible. The VUMA layer implements demand paging

between memory and backing store. The default pager process and policies that optimize disk

utilization are isolated within the VUMA layer.

The separation between the VUMA and PUMA layers isolates the effects of the Psyche

kernel interface from the implementation of virtual memory. Given the relative novelty of

multiprocessor operating systems, and the lack of long-term experience with multiprocessor

programming. evolution in the kernel interfacc is to be expected. A narrow window between
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the VUMA and PUMA layers allows experimentation at the kernel interface level without a

complete reimplementation of memory management. In addition, this separation ensures that

techniques used in the NUMA, UMA, and VUMA layers can be applied to other multiprocessor

operating systems.

The data structures in each of the layers are a cache for information maintained at a

higher layer, usually in a more compact form. For each protection domain, the PUMA layer

maintLins a list of realms for which access has been authorized. The mappings for individual

pages in the protection domain reside in the VUMA layer. Multiple copies of each page are

described in the UMA layer. Multiple hardware page tables for each UMA address space are

maintained in the NUMA layer.

As in Mach [18], we can discard information within a layer and use lazy evaluation to

construct it. Whenever an invalid fault cannot be interpreted at a given layer, it is propagated

to the next layer. which can reconstruct mappings in the lower layer. For example, the

contents of hardware page tables can be reconstructed from corresponding UMA page tables.

If a hardware page table is extremely large or if all page tables consume too much physical

memory. page table entries may be discarded; subsequent invalid faults cause the

corresponding portions of a page table to be reconstructed by the UMA layer. In addition, an

individual mapping in a hardware page table can be discarded by the NUMA layer to force a

reevaluation of a page placement decision. When a reference to the corresponding page

occurs, the global policy implemented by the UMA layer is invoked to determine whether a

page should be replicated or m-grated. Finally, when an address space is created, we need not

construct a representation for all pages in the address space at all levels. Lazy evaluation of

mappings avoids mapping pages that are never referenced and postpones page placeirient

decisions until reference information is available.

4. Virtual Memory

The virtual memory system attempts to maintain a pool of available physical memory on

each processor node, while ensuring that virtual pages remain somewhere in memory for as

long as possible. These two distinct goals are achieved using two different policies: local page

daemons manage the physical memory on each processor node to ensure that local memory

needs can be satisfied; global page daemons migrate pages among processor nodes and

backing store to ensure that overall system needs are met.

Each processor node has a NUMA page daemon to manage its local memory. When a

need for physical memory on a particular node arises, the least-recently-used (LRU) page on

that node is chosen for replacement. We use the Clock algorithm 18] to implement LRU
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approximation. Clock is an example of a global page replacement algorithn 171, in that the

algorithm considers a page for replacement without regard to which process cwns the page.

We chose a global page replacement algorithm, in contrast to a local page replacement

algorithm such as Working Set (WS), because global policies are easier to implement and

appear to be more appropriate for multiprocessors, wherein most of the processes in the

system belong to a small number of applications and page usage will frequently span process

boundaries.

The Clock algorithm requires that we maintain reference information for each page.

Although this task is straightforward on a uniprocessor that supports reference bits, and is

even feasible on a uniprocessor lacking hardware reference bits [2]. several complications arise

in the multiprocessor environment.

" Reference bits are associated with page table entries, and therefore record page map

reference information, rather than page reference information. In a typical uniprocessor

environment, where each page is mapped by a single page table entry, this distinction is

not important. However, in a multiprocessor environment that encourages page sharing.

page reference information may need to be synthesized from several hardware reference

bits, some of which reside in non-local memory.

* The operating system must periodically update reference information by clearing hardware

reference bits. Even if reference information is only computed for pages in local memory,

page tables that map the page may be located anywhere in memory. In addition,

translation lookaside buffer (TLB) entries may need to be flushed to maintain consistency

with page table entries, introducing additional cost and complexity [3,20].

" To minimize average memory access time on a NUMA multiprocessor. a logical page might

be represented by many physical copies. Page reference information for the logical page

must be synthesized from the reference information for the various copies. This synthesis

is expensive, but could be extremely important if it prevents the removal of the last copy of

a page from memory when that page is being used.

In Psyche. local reference information is used and maintained by the NUMA page daemon,

which runs when the available memory on a node falls below some threshold. The daemon

executes a two-handed Clock algorithm 1151 on the local core map to select a page to be

replaced in the local memory. The core map contains node-local reference bits. which are set

only if the page has been referenced locally. The daemon sets the node-local reference bit if

the reference bit in any of the local page table entries for the page is set. The rate at which the

core map is scanned depends on the amount of local physical memory that is available. A

page is selected by the local page daemon if it has not been used recently by a process on the
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same node as the page.

Selected pages are placed on the in-transit list. When a page is placed on the in-transit

list, all local mappings are made invalid. Any remote mappings for the page are left

unchanged. By leaving the remote mappings intact, we put off the expense of remote

invalidations until the page is actually removed from local memory. Immediate invalidation is

not required for remote mappings because the contents of the physical page are unchanged

and any global reference information that could be collected with an invalid remote mapping

could not affect the decision to remove the page from local memory. If a page is referenced

locally while on the in-transit list, it is removed from the list, mapped into the address space in

which the fault occurred, and its node-local reference bit is set. In this case, we avoid the cost

of remote invalidation altogether.

One result of the decision to postpone remote invalidations is that the NUMA layer does

not need to trigger remote invalidation. All mappings to nonlocal memory are created by the

UMA layer and page table consistency decisions are made by the UMA layer.

The in-transit list is processed by an UMA page daemon, which runs whenever the size of

an in-transit list exceeds some threshold. The UMA page daemon examines pages on the in-

transit list in order. The daemon must decide whether to move the page, delete it, or leave it in

place. On a multiprocessor with local and non-local memory, the UMIA page daemon will

rarely, if ever, choose to leave a page in place. Since the page is not being used locally, either

it is not in use at all, in which case it can be removed from physical memory, or it is being

used remotely, and therefore can be moved without increasing the access time for the page.

The UMA page daemon can delete the page if there are other copies of the page in

memory. In this case, all mappings for the physical page can be changed to refer to a different

copy or made invalid. Subsequent faults provide an opportunity for reevaluating the need for a

local copy.

If the UMA page daemon chooses to move the page, any remote mappings for the page are

made invalid. The daemon moves the page to a node with available physical memory,

preferably a node that already contains a mapping for the page. The node-local reference bit

for the new copy is set, so that the page will not be chosen for removal from its new location

until a complete Clock cycle of the corresponding NUMA page daemon has occurred. The page

is then placed on the pageout list, from which main memory pageout decisions are made.

'Since we are also implementing the illusion of uniform memory access time in the UMA layer, poor choices by
the global page daemon can be alleviated by page migration and replication policies.
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A VUMA pageout daemon runs whenever the amount of available physical memory falls

below some threshold. Pages on the pageout list are candidates for removal from main

memory. However, since all mappings to a page on the pageout list have been made invalid.

any reference to such a page will result in a page fault, allowing the kernel to collect global

reference information. The overhead of maintaining global reference information is one page

fault per page, and is incurred only to prevent the removal of a page from main memory.

During a subsequent page fault, all hardware mappings are reconstructed and the page is

removed from the pageout list. If the page is not referenced before it reaches the head of the

pageout list, a flush to backing store is initiated (if necessary) and the physical page is

reclaimed. As a result, a page is flushed from main memory only when there is little physical

memory available anywhere in the system, the page has already been moved from one memory

location to another (in effect, moving the page into the disk cache), and the page has not been

referenced locally in its current location for a complete cycle of the local Clock algorithm.

When a page is requested, it may be found in one of several places: in local memory, in

global memory. on an in-transit list, on a pageout list, or on backing store. The NUMA layer

maps pages in local memory or on an in-transit list. The UMA layer maps pages in global

memory or on a pageout list. The VUMA layer retrieves pages from backing store.

When a page is brought into memory from backing store, it is placed in the local memory

that requested the page, assuming there is free memory. The requested page is mapped into

the faulting address space. Prefetching is used to minimize disk traffic, but not the number of

page faults. Prefetched pages are also stored in local memory as part of a single I/O operation.

but are not mapped into any address space. Subsequent references to those pages may cause

the page to migrate or replicate.

A major advantage of our virtual memory organization is that the management of local

memory, global memory, and backing store are separated, with separate policies for each. The

number and location of the various page daemons can vary with the complexity of the

corresponding policies and the demands within the memory hierarchy. By buffering pages

between daemons that implement the various policies, we can cluster the transfer of pages

between one memory and another or between memory and backing store and amortize policy

computations over several pages. In addition, we effectively "cache" pages between layers in

the memory hierarchy, allowing them a second chance at either local memory or main memory.

Furthermore, the separation of policies allows a separation of the paging rates for local and

global memory: we can utilize well-understood policies and paging rates for local memory

management that are independent of the computation of more complex global policies.
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Our virtual memory implementation has several attractive properties as well. Pages are

removed from main memory infrequently, and then only when there is a shortage of physical

memory and the page is known not to have been referenced recently from anywhere in the

system. Frequently used pages, even if copies, take precedence over unused pages: copies of a

page are coalesced before the page is considered for removal from main memory. Global

reference information, which is expensive to maintain, is collected only on pages that are being

considered for removal from main memory. Finally, invalidation of remote page table entries

and TLBs, which can be very complex and expensive, is done only when absolutely necessary

(Le.. when a page is actually moved or deleted).

5. Page Replication and Migration

The Psyche memory management system provides the illusion of uniform memory ac e.s

time on a NUMA multiprocessor. We attempt to minimize the number of references to nonlocal

memory by using page migration and replication. Migration causes pages that are write-

shared to move close to a processor that accesses them frequently. Replication is used to

minimize memory contention, giving each processor that reads a page a different (possibly

nonlocal) copy, and minimize remote memory accesses, ensuring that each processor has a

local copy.

Page replication is particularly well-suited to readonly pages, since duplicate copies

always remain consistent. Page replication can also be applied to read-write pages, but the

system must maintain consistency among copies. Cache coherence protocols. such as a

directory-based write-invalidate or write-through protocol, can be implemented in software.

maintaining consistency by propogating changes to all copies or merging copies when a change

occurs. The policy that controls page replication must balance the benefits of replicating

read-write pages with the overhead of maintaining consistency in software.

Page migration is also appropriate for readonly pages when physical memory constraints

preclude replication. By placing the page close to the processor that uses it most frequently,

we can minimize average access time for the page. Page migration can also be used with read-

write pages, improving access time without the need for a consistency protocol.

Efficient page migration and replication policies are currently under investigation 14, 1 11.

Here we will describe the mechanisms provided by the Psyche memory management system

and the simple policy we have implemented.

Any policy for effective page replication and migration requires extensive reference

information. Unlike our page replacement algorithm, which performs local memory

management and therefore requires only local reference information, global memory
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management requires global reference information. Ideally, page usage information for each

processor would be available. Although potentially expensive to maintain, approximate page

usage statistics based on aging reference bits can result in substantially better policy decisions

than single reference bits 112]. An alternative is to base page placement decisions on more

recent information, such as the last reference to the page.

Both short-term and long-term reference behavior can play a role in a global memory

management policy. A single reference to a page is a good indication of future use, and

therefore is an important consideration in the placement decision. In those circumstances

where the placement decision has little global impact (for example, the decision to make a local

copy of a readonly page). a single reference may be sufficient to Justify the placement decision.

In other situations, where the placement decision must balance references from many different

nodes, long-term reference history will usually result in a better decision.

Since dynamic reference behavior and local memory mangement policies determine the

optimal page location, static placement decisions are unlikely to be effective. Therefore, the

system must periodically reevaluate page placement decisions. Fortunately, only mappings for

pages in nonlocal memory need to be reevaluated, since accesses to pages in local memory are

alreadv optimnal

A page is stored in nonlocal memory for one of two reasons: (1) at the time of the

placement decision, there was no room in local memory for a copy of the page. or (2) the page

could not easily be migrated to local memory. A page that is stored in nonlocal memory due to

a temporary shortfall in local memory can be copied or migrated when local memory becomes

available. A page that doesn't migrate to local memory due to recent global reference behavior

may want to migrate if the reference behavior changes. Recognizing the availability of local

memory is easy. recognizing a change in global reference behavior is much more difficult.

Both the UMA layer and VUMA layer are responsible for freeing pages in local memory. at

the request of the NUMA page daemon. The UMA layer moves pages to nonlocal memory; the

VUMA layer writes pages to backing store. When local pages are freed, the UMA daemon

makes invalid all local mappings to nonlocal, readonly pages. Subsequent references to the

page will cause a page fault, enabling a new placement decision to be made, which can result

in the creation of a local copy.

To recognize a change in reference behavior, we must collect and evaluate global reference

information. One form of reference behavior is already collected by the virtual memory

implementation: pages that are not used locally become candidates for migration: pages that

are migrated and not used globally become candidates for pageout. For pages that are in use.

either locally or globally, we must choose between migration and replication.
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A shared page can be in one of three states: readonly, read-dominant, and read-write. A

readonly page is never modified, and therefore, may be freely copied on reference, subject to

the availability of physical memory. A read-write page is often modified, and will typically have

only one copy, which may migrate according to the frequency of references. A read-dominant

page is infrequently modified, and can be either migrated or replicated, depending on the cost

of maintaining consistency and recent references to the page. Over time, a read-write page

may become read-dominant, if few modifications to the page occur. Similarly, a read-dominant

page may become read-write if, over time, the frequency of modifications increases

significantly. The system must monitor write operations to both read-write and read-dominant

pages to identify these transitions.

No single action on the part of a user program causes a read-write page to become read-

dominant. It is the absence of write operations over a period of time that signals this

transition. Using the modify bit provided by the hardware, we periodically scan mappings and

attempt to determine when a read-write page is no longer being modified. Such a page then

becomes read-dominant and, depending on the particular global memory management policy.

may be freely copied.

The NUMA layer implements a migration daemon that scans local mappings. The rate at

which the daemon runs is determined by the global memory management policy implemented

by the UMA layer.3 The daemon examines all local mappings to shared pages that are read-

write. A software modify bit in the core map is maintained based on the hardware modify bits

in local page table entries that map the physical frame. The UMA layer is notified when a

software modify bit has not been set since the last scan of the migration daemon. When the

UMA layer has collected this information from all mappings for an UMA page, the page

becomes read-dominant and subject to replication. Copies of a read-dominant page are

mapped readonly. Subsequent modifications to the page result in a page fault, which can be

used to signal a transition from read-dominant to read-write status.

Our current simple policy for page migration and replication is described in Figure 2.

Pages can be either replicatable, mapped but not replicatable, or not mapped anywhere. Prior

to the first write, a page is replicatable. All copies of a read-write page are initially mapped

readonly to catch the first modification to the page. We maintain consistency by invalidating

all copies when a page is written. A page that has been written recently cannot be replicated.

3 Migration daemons do not execute at all if the policy does not require them.
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Figure 2: NUMA Policy State Diagram

The first write fault to a page causes copies of the page to coalesce at the location of the

fault. Migration is not performed explicitly by our simple policy, but does occur implicitly as a

result of the page replacement policy. When a page is removed from local memory, it is placed

in nonlocal memory close to where it is being used, effectively migrating a read-write page.

Automatic page placement and virtual memory decisions often must interact. The page

replication rate that results from the global memory management policy determines how

readily physical memory is devoted to replicated pages, which in turn affects the pageout rate.

The pageout daemon uses a feedback loop to control this affect. The replication rate is

determined by the maximum number of copies allowed per page and the percentage of physical

memory that may be devoted to replicated pages. When pageout occurs frequently, the

replication rate is reduced, causing the global policy to favor migration and nonlocal

references. As a result, we increase the potential for nonlocal memory references to reduce the

number of I/O operations.

The global page daemon can also choose to coalesce copies to reclaim memory, providing

a form of negative feedback to the page replication policy. Copies that go unused locally are

discovered by the local Clock daemon and freed by the global page daemon. Future references

cause page faults, which trigger a new decision on page placement.
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6. Related Work

Several recent projects, including Mach [18]. Symunix 11 [9], and Choices [6], have addressed

various aspects of the memory management problem for multiprocessors. None of these

systems, however, has attempted to address the full range of issues in the scope of a single

system. Mach emphasizes portability, Symunix II focuses on scalability, and Choices is

designed for modularity. We know of no system other than Psyche that implements an

integrated solution to virtual memory management and NUMA memory management for large-

scale, NUMA multiprocessors.

Mach was the first operating system to structure memory management into machine-

dependent and machine-independent modules. The design of our NUMA layer was heavily

influenced by the Mach pmap interface. However, we have directly addressed issues of scaling

and NUMA management, which have not been a focus of the Mach development. The Mach

pmap module exports a single uniform memory model; our NUMA layer exports a physical

memory hierarchy, which is managed by the UMA layer. A Mach implementation for a NUMA

multiprocessor is expected to provide a uniform memory abstraction within the machine-

dependent module. Mach implementations on the RP3 [5] and ACE multiprocessor

workstation [4] exploit global memory to implement the uniform memory model; page allocation

and reclamation are performed in the machine-independent portion of the kernel without

regard to local policies. Our approach allows us to separate the management of a multi-level

memory hierarchy from the machine-dependent portion of the kernel and to separate local and

global memory management policies.

Symunix II. the Ultracomputer version of Unix, has goals similar to ours, but takes a

different approach. Symunix II does not implement standard demand paging: a process

cannot run unless there is sufficient memory for the entire process. Unlike Psyche, Symunix 11

does not automatically cache data in local memory; instead, a cache interface is exported to

the user. To avoid the costs of maintaining TLB consistency, Symunix II does not replace

pages that are mapped into multiple address spaces. Finally, the interaction between demand

paging and NUMA memory management is not addressed in Symunix II.

Choices implements a family of operating systems by encapsulating memory management

abstractions into a class hierarchy of objects. Memory policies can be tailored to individual

memory objects and architectures. Choices uses local page replacement schemes, and has not

explored the interaction between global memory management and NUMA memory

management. Choices has been implemented on an UMA multiprocessor and is now being

ported to a NORMA (No Remote Memory Access) multiprocessor (the Intel Hypercube): the

particular problems presented by a NUMA multiprocessor have not been addressed.
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Our work is complementary to the experimental Platinum kernel [11] in use at the

University of Rochester. Platinum is not intended to be a complete operating system: it is a

platform for investigating nonuniform memory management. Platinum implements an

abstraction called coherent memory, which is implemented in software as an extension of a

directory-based caching mechanism using invalidation. Like the Psyche LMA layer, Platinum

attempts to migrate and replicate pages close to processors that use them. Unlike Psyche,

major portions of the Platinum kernel reside in coherent memory. Platinum is being used to

empirically evaluate various migration and replication policies; we plan to incorporate the

results of this evaluation into our UMA layer implementation.

Our work can also exploit the results of simulation and policy studies for NUMA

management performed at Duke [12. 13]. The simulation studies use software page tables and

software address translation to study the effects of reference history. page size, and page table

locking on NUMA management schemes. The policy studies have considered static solutions

to the page placement problem when working sets do not fit in local memory. Both of these

studies have considered isolated aspects of the memory management problem for NUIA

multiprocessors, while we have attempted an integrated solution.

7. Conclusions

Large-scale, shared-memory multiprocessors have a multi-level memory hierarchy that

introduces new problems for the memory management system. Virtual memory can be used to

migrate pages between main memory and backing store. NUMA memory management can be

used to migrate or replicate pages into local memory. These solutions should be developed in

tandem, since virtual memory and NUMA memory management will often interact.

We have described the Psyche memory management system, which address both isues

and provides an integrated solution. In Psyche, policies for page replacement and page

replication are carefully connected. System overhead is reduced by having a single daemon

support both page replacement decisions and page placement decisions. Reference

information used to guide page replacement is used to guide page placement. Policies and

mechanisms are separated into layers that focus on different layers in the memory hierarchy.

As a result, our implementation is portable and scalable.
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